4b. Show some plots to provide evidence for your answer, and report the coefficients of the best model obtained. Note you will need to use the data.frame() function to create a single data set containing both 𝑥and 𝑦.
plot(fit.summary$cp, xlab="Subset Size", ylab="Cp", pch=20, type="l")
points(3, fit.summary$cp[3], pch=4, col="red", lwd=7)

plot(fit.summary$bic, xlab="Subset Size", ylab="BIC", pch=20, type="l")
points(3, fit.summary$bic[3], pch=4, col="red", lwd=7)

plot(fit.summary$adjr2, xlab="Subset Size", ylab="Adjusted R2", pch=20, type="l")
points(3, fit.summary$adjr2[3], pch=4, col="red", lwd=7)

# Finding: With Cp, BIC and Adjusted R2 criteria, 3, 3, and 3 variable models are picked respectively.
5. Repeat 3, using forward stepwise selection and using backwards stepwise selection. How does your answer compare to the results in 3?
# forward
fit.fwd <- regsubsets(y ~ poly(x, 10, raw=TRUE),
data = df, nvmax = 10,
method="forward")
# backward
fit.bwd <- regsubsets(y ~ poly(x, 10, raw=TRUE),
data = df, nvmax=10,
method="backward")
fwd.summary <- summary(fit.fwd)
bwd.summary <- summary(fit.bwd)
which.min(fwd.summary$cp)
## [1] 4
which.min(bwd.summary$cp)
## [1] 7
which.min(fwd.summary$bic)
## [1] 3
which.min(bwd.summary$bic)
## [1] 5
which.max(fwd.summary$adjr2)
## [1] 4
which.max(bwd.summary$adjr2)
## [1] 7
# Plot the statistics
par(mfrow=c(3, 2))
plot(fwd.summary$cp, xlab="Subset Size", ylab="Forward Cp", pch=20, type="l")
points(3, fwd.summary$cp[3], pch=4, col="red", lwd=7)
plot(bwd.summary$cp, xlab="Subset Size", ylab="Backward Cp", pch=20, type="l")
points(3, bwd.summary$cp[3], pch=4, col="red", lwd=7)
plot(fwd.summary$bic, xlab="Subset Size", ylab="Forward BIC", pch=20, type="l")
points(3, fwd.summary$bic[3], pch=4, col="red", lwd=7)
plot(bwd.summary$bic, xlab="Subset Size", ylab="Backward BIC", pch=20, type="l")
points(3, bwd.summary$bic[3], pch=4, col="red", lwd=7)
plot(fwd.summary$adjr2, xlab="Subset Size", ylab="Forward Adjusted R2", pch=20, type="l")
points(3, fwd.summary$adjr2[3], pch=4, col="red", lwd=7)
plot(bwd.summary$adjr2, xlab="Subset Size", ylab="Backward Adjusted R2", pch=20, type="l")
points(4, bwd.summary$adjr2[4], pch=4, col="red", lwd=7)

# Finding: All statistics pick 3 variable models except for backward stepwise adjusted R2.
# Coefficients
coefficients(fit.fwd, id=3)
## (Intercept) poly(x, 10, raw = TRUE)1 poly(x, 10, raw = TRUE)2
## 4.0615072 8.9752803 1.8762090
## poly(x, 10, raw = TRUE)3
## -0.9823614
coefficients(fit.bwd, id=3)
## (Intercept) poly(x, 10, raw = TRUE)1 poly(x, 10, raw = TRUE)3
## 4.7873698 9.2517551 -1.1050005
## poly(x, 10, raw = TRUE)4
## 0.4048019
coefficients(fit.fwd, id=4)
## (Intercept) poly(x, 10, raw = TRUE)1 poly(x, 10, raw = TRUE)2
## 4.07200775 9.38745596 1.84575641
## poly(x, 10, raw = TRUE)3 poly(x, 10, raw = TRUE)5
## -1.44202574 0.08072292