Setup
library (ISLR)
library (MASS)
library (descr)
Load data
attach(Smarket)
Linear Discriminant Analysis
freq(Direction)

## Direction
## Frequency Percent
## Down 602 48.16
## Up 648 51.84
## Total 1250 100.00
train = Year<2005
lda.fit=lda(Direction~Lag1+Lag2,data=Smarket, subset=Year<2005)
lda.fit
## Call:
## lda(Direction ~ Lag1 + Lag2, data = Smarket, subset = Year <
## 2005)
##
## Prior probabilities of groups:
## Down Up
## 0.491984 0.508016
##
## Group means:
## Lag1 Lag2
## Down 0.04279022 0.03389409
## Up -0.03954635 -0.03132544
##
## Coefficients of linear discriminants:
## LD1
## Lag1 -0.6420190
## Lag2 -0.5135293
plot(lda.fit, col="dodgerblue")

Smarket.2005=subset(Smarket,Year==2005) # Creating subset with 2005 data
lda.pred=predict(lda.fit,Smarket.2005)
names(lda.pred)
## [1] "class" "posterior" "x"
lda.class=lda.pred$class
Direction.2005=Smarket$Direction[!train]
table(lda.class,Direction.2005)
## Direction.2005
## lda.class Down Up
## Down 35 35
## Up 76 106
data.frame(lda.pred)[1:5,]
## class posterior.Down posterior.Up LD1
## 999 Up 0.4901792 0.5098208 0.08293096
## 1000 Up 0.4792185 0.5207815 0.59114102
## 1001 Up 0.4668185 0.5331815 1.16723063
## 1002 Up 0.4740011 0.5259989 0.83335022
## 1003 Up 0.4927877 0.5072123 -0.03792892
table(lda.pred$class,Smarket.2005$Direction)
##
## Down Up
## Down 35 35
## Up 76 106
mean(lda.pred$class==Smarket.2005$Direction)
## [1] 0.5595238