Knowledge Mining: Linear regression

File: Lab_linearregression01.R

Theme: Linear regression

Data: MASS, ISLR

Adapted from ISLR Chapter 3 Lab

# install.packages(c("easypackages","MASS","ISLR","arm"))
library(easypackages)
libraries("arm","MASS","ISLR")
## Loading required package: arm
## Loading required package: MASS
## Loading required package: Matrix
## Loading required package: lme4
## 
## arm (Version 1.12-2, built: 2021-10-15)
## Working directory is /Users/dasha/Desktop/UTD Ph.D. MASTER/First Year/2nd Semester/Knowledge Mining/Labs
## Loading required package: ISLR
## All packages loaded successfully

Load datasets from MASS and ISLR packages

attach(Boston)

Get names

names(Boston)
##  [1] "crim"    "zn"      "indus"   "chas"    "nox"     "rm"      "age"    
##  [8] "dis"     "rad"     "tax"     "ptratio" "black"   "lstat"   "medv"

What is the Boston dataset?

?Boston

Simple linear regression

plot(medv~lstat,Boston)
fit1=lm(medv~lstat,data=Boston)
fit1
## 
## Call:
## lm(formula = medv ~ lstat, data = Boston)
## 
## Coefficients:
## (Intercept)        lstat  
##       34.55        -0.95
summary(fit1)
## 
## Call:
## lm(formula = medv ~ lstat, data = Boston)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.168  -3.990  -1.318   2.034  24.500 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 34.55384    0.56263   61.41   <2e-16 ***
## lstat       -0.95005    0.03873  -24.53   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.216 on 504 degrees of freedom
## Multiple R-squared:  0.5441, Adjusted R-squared:  0.5432 
## F-statistic: 601.6 on 1 and 504 DF,  p-value: < 2.2e-16
abline(fit1,col="red")

names(fit1)
##  [1] "coefficients"  "residuals"     "effects"       "rank"         
##  [5] "fitted.values" "assign"        "qr"            "df.residual"  
##  [9] "xlevels"       "call"          "terms"         "model"
confint(fit1)
##                 2.5 %     97.5 %
## (Intercept) 33.448457 35.6592247
## lstat       -1.026148 -0.8739505

Predictions using values in lstat

predict(fit1,data.frame(lstat=c(0,5,10,15)),interval="confidence") # confidence intervals
##        fit      lwr      upr
## 1 34.55384 33.44846 35.65922
## 2 29.80359 29.00741 30.59978
## 3 25.05335 24.47413 25.63256
## 4 20.30310 19.73159 20.87461
predict(fit1,data.frame(lstat=c(0,5,10,15)),interval="prediction") # prediction intervals
##        fit       lwr      upr
## 1 34.55384 22.291923 46.81576
## 2 29.80359 17.565675 42.04151
## 3 25.05335 12.827626 37.27907
## 4 20.30310  8.077742 32.52846
## Prediction interval uses sample mean and takes into account the variability of the estimators for μ and σ.
## Therefore, the interval will be wider.

Multiple linear regression

fit2=lm(medv~lstat+age,data=Boston)
summary(fit2)
## 
## Call:
## lm(formula = medv ~ lstat + age, data = Boston)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.981  -3.978  -1.283   1.968  23.158 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 33.22276    0.73085  45.458  < 2e-16 ***
## lstat       -1.03207    0.04819 -21.416  < 2e-16 ***
## age          0.03454    0.01223   2.826  0.00491 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.173 on 503 degrees of freedom
## Multiple R-squared:  0.5513, Adjusted R-squared:  0.5495 
## F-statistic:   309 on 2 and 503 DF,  p-value: < 2.2e-16
fit3=lm(medv~.,Boston)
summary(fit3)
## 
## Call:
## lm(formula = medv ~ ., data = Boston)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.595  -2.730  -0.518   1.777  26.199 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.646e+01  5.103e+00   7.144 3.28e-12 ***
## crim        -1.080e-01  3.286e-02  -3.287 0.001087 ** 
## zn           4.642e-02  1.373e-02   3.382 0.000778 ***
## indus        2.056e-02  6.150e-02   0.334 0.738288    
## chas         2.687e+00  8.616e-01   3.118 0.001925 ** 
## nox         -1.777e+01  3.820e+00  -4.651 4.25e-06 ***
## rm           3.810e+00  4.179e-01   9.116  < 2e-16 ***
## age          6.922e-04  1.321e-02   0.052 0.958229    
## dis         -1.476e+00  1.995e-01  -7.398 6.01e-13 ***
## rad          3.060e-01  6.635e-02   4.613 5.07e-06 ***
## tax         -1.233e-02  3.760e-03  -3.280 0.001112 ** 
## ptratio     -9.527e-01  1.308e-01  -7.283 1.31e-12 ***
## black        9.312e-03  2.686e-03   3.467 0.000573 ***
## lstat       -5.248e-01  5.072e-02 -10.347  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.745 on 492 degrees of freedom
## Multiple R-squared:  0.7406, Adjusted R-squared:  0.7338 
## F-statistic: 108.1 on 13 and 492 DF,  p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(fit3)

Update function to respecify the model, i.e. remove age and indus variables

fit4=update(fit3,~.-age-indus)
summary(fit4)
## 
## Call:
## lm(formula = medv ~ crim + zn + chas + nox + rm + dis + rad + 
##     tax + ptratio + black + lstat, data = Boston)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -15.5984  -2.7386  -0.5046   1.7273  26.2373 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  36.341145   5.067492   7.171 2.73e-12 ***
## crim         -0.108413   0.032779  -3.307 0.001010 ** 
## zn            0.045845   0.013523   3.390 0.000754 ***
## chas          2.718716   0.854240   3.183 0.001551 ** 
## nox         -17.376023   3.535243  -4.915 1.21e-06 ***
## rm            3.801579   0.406316   9.356  < 2e-16 ***
## dis          -1.492711   0.185731  -8.037 6.84e-15 ***
## rad           0.299608   0.063402   4.726 3.00e-06 ***
## tax          -0.011778   0.003372  -3.493 0.000521 ***
## ptratio      -0.946525   0.129066  -7.334 9.24e-13 ***
## black         0.009291   0.002674   3.475 0.000557 ***
## lstat        -0.522553   0.047424 -11.019  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.736 on 494 degrees of freedom
## Multiple R-squared:  0.7406, Adjusted R-squared:  0.7348 
## F-statistic: 128.2 on 11 and 494 DF,  p-value: < 2.2e-16

Set the next plot configuration

par(mfrow=c(2,2))
plot(fit4)

Uses coefplot to plot coefficients. Note the line at 0.

par(mfrow=c(1,1))
arm::coefplot(fit4)

Nonlinear terms and Interactions

fit5=lm(medv~lstat*age,Boston) # include both variables and the interaction term x1:x2
summary(fit5)
## 
## Call:
## lm(formula = medv ~ lstat * age, data = Boston)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.806  -4.045  -1.333   2.085  27.552 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 36.0885359  1.4698355  24.553  < 2e-16 ***
## lstat       -1.3921168  0.1674555  -8.313 8.78e-16 ***
## age         -0.0007209  0.0198792  -0.036   0.9711    
## lstat:age    0.0041560  0.0018518   2.244   0.0252 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.149 on 502 degrees of freedom
## Multiple R-squared:  0.5557, Adjusted R-squared:  0.5531 
## F-statistic: 209.3 on 3 and 502 DF,  p-value: < 2.2e-16

I() identity function for squared term to interpret as-is

Combine two command lines with semicolon

fit6=lm(medv~lstat +I(lstat^2),Boston); summary(fit6)
## 
## Call:
## lm(formula = medv ~ lstat + I(lstat^2), data = Boston)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -15.2834  -3.8313  -0.5295   2.3095  25.4148 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 42.862007   0.872084   49.15   <2e-16 ***
## lstat       -2.332821   0.123803  -18.84   <2e-16 ***
## I(lstat^2)   0.043547   0.003745   11.63   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.524 on 503 degrees of freedom
## Multiple R-squared:  0.6407, Adjusted R-squared:  0.6393 
## F-statistic: 448.5 on 2 and 503 DF,  p-value: < 2.2e-16
par(mfrow=c(1,1))
plot(medv~lstat)
points(lstat,fitted(fit6),col="red",pch=20)
fit7=lm(medv~poly(lstat,4))
points(lstat,fitted(fit7),col="blue",pch=20)

Qualitative predictors

names(Carseats)
##  [1] "Sales"       "CompPrice"   "Income"      "Advertising" "Population" 
##  [6] "Price"       "ShelveLoc"   "Age"         "Education"   "Urban"      
## [11] "US"
summary(Carseats)
##      Sales          CompPrice       Income        Advertising    
##  Min.   : 0.000   Min.   : 77   Min.   : 21.00   Min.   : 0.000  
##  1st Qu.: 5.390   1st Qu.:115   1st Qu.: 42.75   1st Qu.: 0.000  
##  Median : 7.490   Median :125   Median : 69.00   Median : 5.000  
##  Mean   : 7.496   Mean   :125   Mean   : 68.66   Mean   : 6.635  
##  3rd Qu.: 9.320   3rd Qu.:135   3rd Qu.: 91.00   3rd Qu.:12.000  
##  Max.   :16.270   Max.   :175   Max.   :120.00   Max.   :29.000  
##    Population        Price        ShelveLoc        Age          Education   
##  Min.   : 10.0   Min.   : 24.0   Bad   : 96   Min.   :25.00   Min.   :10.0  
##  1st Qu.:139.0   1st Qu.:100.0   Good  : 85   1st Qu.:39.75   1st Qu.:12.0  
##  Median :272.0   Median :117.0   Medium:219   Median :54.50   Median :14.0  
##  Mean   :264.8   Mean   :115.8                Mean   :53.32   Mean   :13.9  
##  3rd Qu.:398.5   3rd Qu.:131.0                3rd Qu.:66.00   3rd Qu.:16.0  
##  Max.   :509.0   Max.   :191.0                Max.   :80.00   Max.   :18.0  
##  Urban       US     
##  No :118   No :142  
##  Yes:282   Yes:258  
##                     
##                     
##                     
## 
fit1=lm(Sales~.+Income:Advertising+Age:Price,Carseats) # add two interaction terms
summary(fit1)
## 
## Call:
## lm(formula = Sales ~ . + Income:Advertising + Age:Price, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9208 -0.7503  0.0177  0.6754  3.3413 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         6.5755654  1.0087470   6.519 2.22e-10 ***
## CompPrice           0.0929371  0.0041183  22.567  < 2e-16 ***
## Income              0.0108940  0.0026044   4.183 3.57e-05 ***
## Advertising         0.0702462  0.0226091   3.107 0.002030 ** 
## Population          0.0001592  0.0003679   0.433 0.665330    
## Price              -0.1008064  0.0074399 -13.549  < 2e-16 ***
## ShelveLocGood       4.8486762  0.1528378  31.724  < 2e-16 ***
## ShelveLocMedium     1.9532620  0.1257682  15.531  < 2e-16 ***
## Age                -0.0579466  0.0159506  -3.633 0.000318 ***
## Education          -0.0208525  0.0196131  -1.063 0.288361    
## UrbanYes            0.1401597  0.1124019   1.247 0.213171    
## USYes              -0.1575571  0.1489234  -1.058 0.290729    
## Income:Advertising  0.0007510  0.0002784   2.698 0.007290 ** 
## Price:Age           0.0001068  0.0001333   0.801 0.423812    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.011 on 386 degrees of freedom
## Multiple R-squared:  0.8761, Adjusted R-squared:  0.8719 
## F-statistic:   210 on 13 and 386 DF,  p-value: < 2.2e-16
attach(Carseats)
contrasts(Carseats$ShelveLoc) # what is contrasts function?
##        Good Medium
## Bad       0      0
## Good      1      0
## Medium    0      1
?contrasts

Writing R functions

Combine the lm, plot and abline functions to create a one step regression fit plot function

regplot=function(x,y){
  fit=lm(y~x)
  plot(x,y)
  abline(fit,col="red")
}
attach(Carseats)
## The following objects are masked from Carseats (pos = 3):
## 
##     Advertising, Age, CompPrice, Education, Income, Population, Price,
##     Sales, ShelveLoc, Urban, US
regplot(Price,Sales)

Allow extra room for additional arguments/specifications

regplot=function(x,y,...){
  fit=lm(y~x)
  plot(x,y,...)
  abline(fit,col="red")
}
regplot(Price,Sales,xlab="Price",ylab="Sales",col="blue",pch=20)

Additional note: try out the coefplot2 package to finetune the coefplots

# install.packages("reshape")
install.packages("coefplot2", repos="http://www.math.mcmaster.ca/bolker/R", type="source")
library(coefplot2)
## Loading required package: coda
## 
## Attaching package: 'coda'
## The following object is masked from 'package:arm':
## 
##     traceplot
coefplot2(fit1)

coefplot(fit1, col.pts = "blue")

Exercise

Try other combination of interactive terms

fit1=lm(Sales~.+Income:Education+Advertising:Price,Carseats) # add two interaction terms
summary(fit1)
## 
## Call:
## lm(formula = Sales ~ . + Income:Education + Advertising:Price, 
##     data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8261 -0.7123  0.0108  0.6640  3.3695 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        6.1580754  0.9085985   6.778 4.59e-11 ***
## CompPrice          0.0929056  0.0041518  22.377  < 2e-16 ***
## Income             0.0118017  0.0098044   1.204   0.2294    
## Advertising        0.0800788  0.0409246   1.957   0.0511 .  
## Population         0.0002010  0.0003708   0.542   0.5881    
## Price             -0.0974296  0.0033280 -29.276  < 2e-16 ***
## ShelveLocGood      4.8479236  0.1535391  31.575  < 2e-16 ***
## ShelveLocMedium    1.9498138  0.1266378  15.397  < 2e-16 ***
## Age               -0.0457668  0.0031994 -14.305  < 2e-16 ***
## Education         -0.0413898  0.0525243  -0.788   0.4312    
## UrbanYes           0.1148548  0.1135798   1.011   0.3125    
## USYes             -0.1690308  0.1505967  -1.122   0.2624    
## Income:Education   0.0002962  0.0006983   0.424   0.6717    
## Advertising:Price  0.0003599  0.0003301   1.090   0.2763    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.02 on 386 degrees of freedom
## Multiple R-squared:  0.8739, Adjusted R-squared:  0.8696 
## F-statistic: 205.7 on 13 and 386 DF,  p-value: < 2.2e-16

How to interpret interactive terms?

### Interaction term should be included if it makes sense conceptually (meaning that it makes sense that the effect of one independent variable on DV is likely dependent on the effect of another independnt variable). Interpret the interaction term if significant; if insignificant, we can remove it from the model. Only interpret the interaction term, not the independent variables used to create it. The significant interaction term itself is difficult to interpret becasue it implies uncertainty about the relative importance of main effects. In other words, the relative importance of individual predictors is difficult to understand if interaction effects are significant.

Read: Brambor, T., Clark, W.R. and Golder, M., 2006. Understanding interaction models: Improving empirical analyses. Political analysis, 14(1), pp.63-82.

What are qualitative variables? What class should they be?

### Qualitative variables are variables that are not numerical.They belong to a nonumerical or categorical class.