Clear memory

rm(list=ls())

Load data: Civil Society Data (csdata)

csdata <- read.csv("/Users/dasha/Desktop/NEW1.csv")

Check for missing values

is.na(csdata)
##        Country  Year No_CSO_Increased. Rmtnc_Inflow_MIL GDP_Per_Capita
##   [1,]   FALSE FALSE             FALSE            FALSE          FALSE
##   [2,]   FALSE FALSE             FALSE            FALSE          FALSE
##   [3,]   FALSE FALSE             FALSE            FALSE          FALSE
##   [4,]   FALSE FALSE             FALSE            FALSE          FALSE
##   [5,]   FALSE FALSE             FALSE            FALSE          FALSE
##   [6,]   FALSE FALSE             FALSE            FALSE          FALSE
##   [7,]   FALSE FALSE             FALSE            FALSE          FALSE
##   [8,]   FALSE FALSE             FALSE            FALSE          FALSE
##   [9,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [10,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [11,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [12,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [13,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [14,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [15,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [16,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [17,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [18,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [19,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [20,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [21,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [22,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [23,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [24,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [25,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [26,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [27,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [28,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [29,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [30,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [31,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [32,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [33,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [34,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [35,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [36,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [37,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [38,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [39,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [40,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [41,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [42,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [43,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [44,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [45,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [46,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [47,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [48,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [49,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [50,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [51,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [52,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [53,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [54,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [55,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [56,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [57,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [58,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [59,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [60,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [61,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [62,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [63,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [64,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [65,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [66,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [67,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [68,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [69,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [70,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [71,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [72,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [73,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [74,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [75,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [76,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [77,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [78,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [79,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [80,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [81,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [82,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [83,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [84,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [85,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [86,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [87,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [88,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [89,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [90,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [91,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [92,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [93,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [94,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [95,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [96,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [97,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [98,]   FALSE FALSE             FALSE            FALSE          FALSE
##  [99,]   FALSE FALSE             FALSE            FALSE          FALSE
## [100,]   FALSE FALSE             FALSE            FALSE          FALSE
## [101,]   FALSE FALSE             FALSE            FALSE          FALSE
## [102,]   FALSE FALSE             FALSE            FALSE          FALSE
## [103,]   FALSE FALSE             FALSE            FALSE          FALSE
## [104,]   FALSE FALSE             FALSE            FALSE          FALSE
## [105,]   FALSE FALSE             FALSE            FALSE          FALSE
## [106,]   FALSE FALSE             FALSE            FALSE          FALSE
## [107,]   FALSE FALSE             FALSE            FALSE          FALSE
## [108,]   FALSE FALSE             FALSE            FALSE          FALSE
## [109,]   FALSE FALSE             FALSE            FALSE          FALSE
## [110,]   FALSE FALSE             FALSE            FALSE          FALSE
## [111,]   FALSE FALSE             FALSE            FALSE          FALSE
## [112,]   FALSE FALSE             FALSE            FALSE          FALSE
## [113,]   FALSE FALSE             FALSE            FALSE          FALSE
## [114,]   FALSE FALSE             FALSE            FALSE          FALSE
## [115,]   FALSE FALSE             FALSE            FALSE          FALSE
## [116,]   FALSE FALSE             FALSE            FALSE          FALSE
## [117,]   FALSE FALSE             FALSE            FALSE          FALSE
## [118,]   FALSE FALSE             FALSE            FALSE          FALSE
## [119,]   FALSE FALSE             FALSE            FALSE          FALSE
## [120,]   FALSE FALSE             FALSE            FALSE          FALSE
## [121,]   FALSE FALSE             FALSE            FALSE          FALSE
## [122,]   FALSE FALSE             FALSE            FALSE          FALSE
## [123,]   FALSE FALSE             FALSE            FALSE          FALSE
## [124,]   FALSE FALSE             FALSE            FALSE          FALSE
## [125,]   FALSE FALSE             FALSE            FALSE          FALSE
## [126,]   FALSE FALSE             FALSE            FALSE          FALSE
## [127,]   FALSE FALSE             FALSE            FALSE          FALSE
## [128,]   FALSE FALSE             FALSE            FALSE          FALSE
## [129,]   FALSE FALSE             FALSE            FALSE          FALSE
## [130,]   FALSE FALSE             FALSE            FALSE          FALSE
## [131,]   FALSE FALSE             FALSE            FALSE          FALSE
## [132,]   FALSE FALSE             FALSE            FALSE          FALSE
## [133,]   FALSE FALSE             FALSE            FALSE          FALSE
## [134,]   FALSE FALSE             FALSE            FALSE          FALSE
## [135,]   FALSE FALSE             FALSE            FALSE          FALSE
## [136,]   FALSE FALSE             FALSE            FALSE          FALSE
## [137,]   FALSE FALSE             FALSE            FALSE          FALSE
## [138,]   FALSE FALSE             FALSE            FALSE          FALSE
## [139,]   FALSE FALSE             FALSE            FALSE          FALSE
## [140,]   FALSE FALSE             FALSE            FALSE          FALSE
## [141,]   FALSE FALSE             FALSE            FALSE          FALSE
## [142,]   FALSE FALSE             FALSE            FALSE          FALSE
## [143,]   FALSE FALSE             FALSE            FALSE          FALSE
## [144,]   FALSE FALSE             FALSE            FALSE          FALSE
## [145,]   FALSE FALSE             FALSE            FALSE          FALSE
## [146,]   FALSE FALSE             FALSE            FALSE          FALSE
## [147,]   FALSE FALSE             FALSE            FALSE          FALSE
## [148,]   FALSE FALSE             FALSE            FALSE          FALSE
## [149,]   FALSE FALSE             FALSE            FALSE          FALSE
## [150,]   FALSE FALSE             FALSE            FALSE          FALSE
## [151,]   FALSE FALSE             FALSE            FALSE          FALSE
## [152,]   FALSE FALSE             FALSE            FALSE          FALSE
## [153,]   FALSE FALSE             FALSE            FALSE          FALSE
## [154,]   FALSE FALSE             FALSE            FALSE          FALSE
## [155,]   FALSE FALSE             FALSE            FALSE          FALSE
## [156,]   FALSE FALSE             FALSE            FALSE          FALSE
## [157,]   FALSE FALSE             FALSE            FALSE          FALSE
## [158,]   FALSE FALSE             FALSE            FALSE          FALSE
## [159,]   FALSE FALSE             FALSE            FALSE          FALSE
## [160,]   FALSE FALSE             FALSE            FALSE          FALSE
## [161,]   FALSE FALSE             FALSE            FALSE          FALSE
## [162,]   FALSE FALSE             FALSE            FALSE          FALSE
## [163,]   FALSE FALSE             FALSE            FALSE          FALSE
## [164,]   FALSE FALSE             FALSE            FALSE          FALSE
## [165,]   FALSE FALSE             FALSE            FALSE          FALSE
## [166,]   FALSE FALSE             FALSE            FALSE          FALSE
## [167,]   FALSE FALSE             FALSE            FALSE          FALSE
## [168,]   FALSE FALSE             FALSE            FALSE          FALSE
## [169,]   FALSE FALSE             FALSE            FALSE          FALSE
## [170,]   FALSE FALSE             FALSE            FALSE          FALSE
## [171,]   FALSE FALSE             FALSE            FALSE          FALSE
## [172,]   FALSE FALSE             FALSE            FALSE          FALSE
## [173,]   FALSE FALSE             FALSE            FALSE          FALSE
## [174,]   FALSE FALSE             FALSE            FALSE          FALSE
## [175,]   FALSE FALSE             FALSE            FALSE          FALSE
## [176,]   FALSE FALSE             FALSE            FALSE          FALSE
## [177,]   FALSE FALSE             FALSE            FALSE          FALSE
## [178,]   FALSE FALSE             FALSE            FALSE          FALSE
## [179,]   FALSE FALSE             FALSE            FALSE          FALSE
## [180,]   FALSE FALSE             FALSE            FALSE          FALSE
## [181,]   FALSE FALSE             FALSE            FALSE          FALSE
## [182,]   FALSE FALSE             FALSE            FALSE          FALSE
## [183,]   FALSE FALSE             FALSE            FALSE          FALSE
## [184,]   FALSE FALSE             FALSE            FALSE          FALSE
## [185,]   FALSE FALSE             FALSE            FALSE          FALSE
## [186,]   FALSE FALSE             FALSE            FALSE          FALSE
## [187,]   FALSE FALSE             FALSE            FALSE          FALSE
## [188,]   FALSE FALSE             FALSE            FALSE          FALSE
## [189,]   FALSE FALSE             FALSE            FALSE          FALSE
## [190,]   FALSE FALSE             FALSE            FALSE          FALSE
## [191,]   FALSE FALSE             FALSE            FALSE          FALSE
## [192,]   FALSE FALSE             FALSE            FALSE          FALSE
## [193,]   FALSE FALSE             FALSE            FALSE          FALSE
## [194,]   FALSE FALSE             FALSE            FALSE          FALSE
## [195,]   FALSE FALSE             FALSE            FALSE          FALSE
## [196,]   FALSE FALSE             FALSE            FALSE          FALSE
## [197,]   FALSE FALSE             FALSE            FALSE          FALSE
## [198,]   FALSE FALSE             FALSE            FALSE          FALSE
## [199,]   FALSE FALSE             FALSE            FALSE          FALSE
## [200,]   FALSE FALSE             FALSE            FALSE          FALSE
##        Population Polity2
##   [1,]      FALSE    TRUE
##   [2,]      FALSE   FALSE
##   [3,]      FALSE   FALSE
##   [4,]      FALSE   FALSE
##   [5,]      FALSE   FALSE
##   [6,]      FALSE   FALSE
##   [7,]      FALSE   FALSE
##   [8,]      FALSE   FALSE
##   [9,]      FALSE    TRUE
##  [10,]      FALSE    TRUE
##  [11,]      FALSE   FALSE
##  [12,]      FALSE   FALSE
##  [13,]      FALSE   FALSE
##  [14,]      FALSE   FALSE
##  [15,]      FALSE   FALSE
##  [16,]      FALSE   FALSE
##  [17,]      FALSE    TRUE
##  [18,]      FALSE    TRUE
##  [19,]      FALSE   FALSE
##  [20,]      FALSE   FALSE
##  [21,]      FALSE   FALSE
##  [22,]      FALSE   FALSE
##  [23,]      FALSE   FALSE
##  [24,]      FALSE   FALSE
##  [25,]      FALSE    TRUE
##  [26,]      FALSE    TRUE
##  [27,]      FALSE   FALSE
##  [28,]      FALSE   FALSE
##  [29,]      FALSE   FALSE
##  [30,]      FALSE   FALSE
##  [31,]      FALSE   FALSE
##  [32,]      FALSE   FALSE
##  [33,]      FALSE   FALSE
##  [34,]      FALSE   FALSE
##  [35,]      FALSE   FALSE
##  [36,]      FALSE   FALSE
##  [37,]      FALSE   FALSE
##  [38,]      FALSE   FALSE
##  [39,]      FALSE   FALSE
##  [40,]      FALSE   FALSE
##  [41,]      FALSE   FALSE
##  [42,]      FALSE   FALSE
##  [43,]      FALSE   FALSE
##  [44,]      FALSE   FALSE
##  [45,]      FALSE   FALSE
##  [46,]      FALSE   FALSE
##  [47,]      FALSE   FALSE
##  [48,]      FALSE   FALSE
##  [49,]      FALSE   FALSE
##  [50,]      FALSE   FALSE
##  [51,]      FALSE   FALSE
##  [52,]      FALSE   FALSE
##  [53,]      FALSE   FALSE
##  [54,]      FALSE   FALSE
##  [55,]      FALSE   FALSE
##  [56,]      FALSE   FALSE
##  [57,]      FALSE    TRUE
##  [58,]      FALSE    TRUE
##  [59,]      FALSE   FALSE
##  [60,]      FALSE   FALSE
##  [61,]      FALSE   FALSE
##  [62,]      FALSE   FALSE
##  [63,]      FALSE   FALSE
##  [64,]      FALSE   FALSE
##  [65,]      FALSE   FALSE
##  [66,]      FALSE   FALSE
##  [67,]      FALSE   FALSE
##  [68,]      FALSE   FALSE
##  [69,]      FALSE    TRUE
##  [70,]      FALSE    TRUE
##  [71,]      FALSE   FALSE
##  [72,]      FALSE   FALSE
##  [73,]      FALSE   FALSE
##  [74,]      FALSE   FALSE
##  [75,]      FALSE   FALSE
##  [76,]      FALSE   FALSE
##  [77,]      FALSE   FALSE
##  [78,]      FALSE   FALSE
##  [79,]      FALSE   FALSE
##  [80,]      FALSE   FALSE
##  [81,]      FALSE   FALSE
##  [82,]      FALSE   FALSE
##  [83,]      FALSE    TRUE
##  [84,]      FALSE   FALSE
##  [85,]      FALSE   FALSE
##  [86,]      FALSE   FALSE
##  [87,]      FALSE   FALSE
##  [88,]      FALSE   FALSE
##  [89,]      FALSE   FALSE
##  [90,]      FALSE   FALSE
##  [91,]      FALSE    TRUE
##  [92,]      FALSE    TRUE
##  [93,]      FALSE   FALSE
##  [94,]      FALSE   FALSE
##  [95,]      FALSE   FALSE
##  [96,]      FALSE   FALSE
##  [97,]      FALSE   FALSE
##  [98,]      FALSE   FALSE
##  [99,]      FALSE   FALSE
## [100,]      FALSE   FALSE
## [101,]      FALSE   FALSE
## [102,]      FALSE   FALSE
## [103,]      FALSE   FALSE
## [104,]      FALSE   FALSE
## [105,]      FALSE   FALSE
## [106,]      FALSE   FALSE
## [107,]      FALSE    TRUE
## [108,]      FALSE    TRUE
## [109,]      FALSE   FALSE
## [110,]      FALSE   FALSE
## [111,]      FALSE   FALSE
## [112,]      FALSE   FALSE
## [113,]      FALSE   FALSE
## [114,]      FALSE   FALSE
## [115,]      FALSE   FALSE
## [116,]      FALSE   FALSE
## [117,]      FALSE   FALSE
## [118,]      FALSE   FALSE
## [119,]      FALSE   FALSE
## [120,]      FALSE   FALSE
## [121,]      FALSE   FALSE
## [122,]      FALSE   FALSE
## [123,]      FALSE   FALSE
## [124,]      FALSE   FALSE
## [125,]      FALSE   FALSE
## [126,]      FALSE   FALSE
## [127,]      FALSE   FALSE
## [128,]      FALSE   FALSE
## [129,]      FALSE   FALSE
## [130,]      FALSE   FALSE
## [131,]      FALSE   FALSE
## [132,]      FALSE   FALSE
## [133,]      FALSE   FALSE
## [134,]      FALSE   FALSE
## [135,]      FALSE   FALSE
## [136,]      FALSE   FALSE
## [137,]      FALSE   FALSE
## [138,]      FALSE   FALSE
## [139,]      FALSE   FALSE
## [140,]      FALSE   FALSE
## [141,]      FALSE   FALSE
## [142,]      FALSE   FALSE
## [143,]      FALSE   FALSE
## [144,]      FALSE   FALSE
## [145,]      FALSE   FALSE
## [146,]      FALSE   FALSE
## [147,]      FALSE   FALSE
## [148,]      FALSE   FALSE
## [149,]      FALSE    TRUE
## [150,]      FALSE    TRUE
## [151,]      FALSE   FALSE
## [152,]      FALSE   FALSE
## [153,]      FALSE   FALSE
## [154,]      FALSE   FALSE
## [155,]      FALSE   FALSE
## [156,]      FALSE   FALSE
## [157,]      FALSE   FALSE
## [158,]      FALSE   FALSE
## [159,]      FALSE   FALSE
## [160,]      FALSE   FALSE
## [161,]      FALSE   FALSE
## [162,]      FALSE   FALSE
## [163,]      FALSE   FALSE
## [164,]      FALSE   FALSE
## [165,]      FALSE   FALSE
## [166,]      FALSE   FALSE
## [167,]      FALSE   FALSE
## [168,]      FALSE   FALSE
## [169,]      FALSE   FALSE
## [170,]      FALSE   FALSE
## [171,]      FALSE   FALSE
## [172,]      FALSE   FALSE
## [173,]      FALSE   FALSE
## [174,]      FALSE   FALSE
## [175,]      FALSE   FALSE
## [176,]      FALSE   FALSE
## [177,]      FALSE   FALSE
## [178,]      FALSE   FALSE
## [179,]      FALSE   FALSE
## [180,]      FALSE   FALSE
## [181,]      FALSE   FALSE
## [182,]      FALSE   FALSE
## [183,]      FALSE   FALSE
## [184,]      FALSE   FALSE
## [185,]      FALSE   FALSE
## [186,]      FALSE   FALSE
## [187,]      FALSE   FALSE
## [188,]      FALSE   FALSE
## [189,]      FALSE    TRUE
## [190,]      FALSE    TRUE
## [191,]      FALSE   FALSE
## [192,]      FALSE   FALSE
## [193,]      FALSE   FALSE
## [194,]      FALSE   FALSE
## [195,]      FALSE   FALSE
## [196,]      FALSE   FALSE
## [197,]      FALSE   FALSE
## [198,]      FALSE   FALSE
## [199,]      FALSE   FALSE
## [200,]      FALSE   FALSE

Recode missing vaues into NA

csdata$Polity2[csdata$v1==' '] <- NA

Remove NA values

csdata1 <- na.omit(csdata) 

Names of variables

names(csdata1)
## [1] "Country"           "Year"              "No_CSO_Increased."
## [4] "Rmtnc_Inflow_MIL"  "GDP_Per_Capita"    "Population"       
## [7] "Polity2"

Browse data

View(csdata1)

Summary

summary(csdata1)
##    Country               Year      No_CSO_Increased. Rmtnc_Inflow_MIL  
##  Length:180         Min.   :2005   Min.   :0.0000    Min.   :    0.00  
##  Class :character   1st Qu.:2005   1st Qu.:0.0000    1st Qu.:   65.68  
##  Mode  :character   Median :2015   Median :0.0000    Median :  500.74  
##                     Mean   :2010   Mean   :0.4889    Mean   : 3141.41  
##                     3rd Qu.:2015   3rd Qu.:1.0000    3rd Qu.: 2216.02  
##                     Max.   :2015   Max.   :1.0000    Max.   :68790.20  
##  GDP_Per_Capita        Population           Polity2          
##  Min.   :        0   Min.   :6.500e+01   Min.   :-9.000e+00  
##  1st Qu.:      811   1st Qu.:3.287e+06   1st Qu.:-3.000e+00  
##  Median :     1991   Median :1.107e+07   Median : 5.000e+00  
##  Mean   :  5067340   Mean   :5.691e+07   Mean   : 1.332e+08  
##  3rd Qu.:     4226   3rd Qu.:3.391e+07   3rd Qu.: 8.000e+00  
##  Max.   :846741711   Max.   :1.368e+09   Max.   : 1.778e+10

Create a new data subset that excludes non-numeric variable (country)

Then plot the data with smaller dots

cs <- csdata1[,c("No_CSO_Increased.", "Rmtnc_Inflow_MIL", "GDP_Per_Capita", "Population", "Polity2")]
pairs(cs,col=cs$No_CSO_Increased.,cex=.5)

Logistic regression

#  Fit a logistic regression model to predict "Increase in Number of CSOs" using Remittances, Democracy, GDP/Capita and Population
glm.fit=glm(No_CSO_Increased.~Rmtnc_Inflow_MIL+GDP_Per_Capita+Population+Polity2, data=csdata1,family=binomial)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(glm.fit)
## 
## Call:
## glm(formula = No_CSO_Increased. ~ Rmtnc_Inflow_MIL + GDP_Per_Capita + 
##     Population + Polity2, family = binomial, data = csdata1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.8376  -1.1099  -0.1582   1.1301   1.6850  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)   
## (Intercept)       1.278e-01  2.484e-01   0.514  0.60693   
## Rmtnc_Inflow_MIL -1.079e-05  4.515e-05  -0.239  0.81116   
## GDP_Per_Capita   -1.737e-04  6.508e-05  -2.670  0.00760 **
## Population        1.112e-08  5.135e-09   2.165  0.03040 * 
## Polity2           1.818e-06  6.947e-07   2.616  0.00889 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 249.44  on 179  degrees of freedom
## Residual deviance: 225.13  on 175  degrees of freedom
## AIC: 235.13
## 
## Number of Fisher Scoring iterations: 16

Predict function

# I use the predict function to predict the probability of an increase in the number of CSOs, given values of the predictors.
glm.probs=predict(glm.fit,type="response") 
glm.probs[1:5]
##         2         3         4         5         6 
## 0.5987587 0.4264919 0.3458949 0.4943204 0.4359150
# I coded "Increase in CSOs" as 1, so glm.probs are the probabilities of No_CSO_Increased. going up. Here I create actual labels instead of probabilities.
glm.pred=ifelse(glm.probs>0.5,"Increase","No Increase")

# Confusion matrix
attach(csdata1)
table(glm.pred,No_CSO_Increased.) # predictions vs. truth
##              No_CSO_Increased.
## glm.pred       0  1
##   Increase    37 54
##   No Increase 55 34

Check accuracy / Compute the fraction of No_CSO_Increased for which the prediction was correct

mean(glm.pred==No_CSO_Increased.)
## [1] 0

Split the data into training and test sets

# Create a vector corresponding to the observations from 2005
train = Year<2015

# Fit the logistic regression using only the train data
glm.fit=glm(No_CSO_Increased.~Rmtnc_Inflow_MIL+GDP_Per_Capita+Population+Polity2, data=csdata1,family=binomial, subset=train)

# Test the model by fitting the test data into the fitted model
glm.probs=predict(glm.fit,newdata=csdata1[!train,],type="response") 

# Compute the predictions for 2015 and compare them to the actual 
# increase in number of CSOs over that time period
glm.pred=ifelse(glm.probs >0.5,"1","0")
No_CSO_Increased..2015=csdata1$No_CSO_Increased[!train]
table(glm.pred,No_CSO_Increased..2015)
##         No_CSO_Increased..2015
## glm.pred  0  1
##        0 20  7
##        1 44 20

Test error rate

mean(glm.pred==No_CSO_Increased..2015)
## [1] 0.4395604

Training error rate

mean(glm.pred != No_CSO_Increased..2015)
## [1] 0.5604396

Check accuracy rate

20/(44+20)
## [1] 0.3125

Plot remittances

plot(Rmtnc_Inflow_MIL)