rm(list=ls())
csdata <- read.csv("/Users/dasha/Desktop/CSDATA1.csv")
is.na(csdata)
## Country Year CSO_Growth No_IGO_Memberships Rmtnc_Inflow_GDP Democracy
## [1,] FALSE FALSE FALSE FALSE FALSE TRUE
## [2,] FALSE FALSE FALSE FALSE FALSE FALSE
## [3,] FALSE FALSE FALSE FALSE FALSE FALSE
## [4,] FALSE FALSE FALSE FALSE FALSE FALSE
## [5,] FALSE FALSE FALSE FALSE FALSE FALSE
## [6,] FALSE FALSE FALSE FALSE FALSE FALSE
## [7,] FALSE FALSE FALSE FALSE FALSE FALSE
## [8,] FALSE FALSE FALSE FALSE FALSE FALSE
## [9,] FALSE FALSE FALSE FALSE FALSE TRUE
## [10,] FALSE FALSE FALSE FALSE FALSE TRUE
## [11,] FALSE FALSE FALSE FALSE FALSE FALSE
## [12,] FALSE FALSE FALSE FALSE FALSE FALSE
## [13,] FALSE FALSE FALSE FALSE FALSE FALSE
## [14,] FALSE FALSE FALSE FALSE FALSE FALSE
## [15,] FALSE FALSE FALSE FALSE FALSE FALSE
## [16,] FALSE FALSE FALSE FALSE FALSE FALSE
## [17,] FALSE FALSE FALSE FALSE FALSE TRUE
## [18,] FALSE FALSE FALSE FALSE FALSE TRUE
## [19,] FALSE FALSE FALSE FALSE FALSE FALSE
## [20,] FALSE FALSE FALSE FALSE FALSE FALSE
## [21,] FALSE FALSE FALSE FALSE FALSE FALSE
## [22,] FALSE FALSE FALSE FALSE FALSE FALSE
## [23,] FALSE FALSE FALSE FALSE FALSE FALSE
## [24,] FALSE FALSE FALSE FALSE FALSE FALSE
## [25,] FALSE FALSE FALSE FALSE FALSE TRUE
## [26,] FALSE FALSE FALSE FALSE FALSE TRUE
## [27,] FALSE FALSE FALSE FALSE FALSE FALSE
## [28,] FALSE FALSE FALSE FALSE FALSE FALSE
## [29,] FALSE FALSE FALSE FALSE FALSE FALSE
## [30,] FALSE FALSE FALSE FALSE FALSE FALSE
## [31,] FALSE FALSE FALSE FALSE FALSE FALSE
## [32,] FALSE FALSE FALSE FALSE FALSE FALSE
## [33,] FALSE FALSE FALSE FALSE FALSE FALSE
## [34,] FALSE FALSE FALSE FALSE FALSE FALSE
## [35,] FALSE FALSE FALSE FALSE FALSE FALSE
## [36,] FALSE FALSE FALSE FALSE FALSE FALSE
## [37,] FALSE FALSE FALSE FALSE FALSE FALSE
## [38,] FALSE FALSE FALSE FALSE FALSE FALSE
## [39,] FALSE FALSE FALSE FALSE FALSE FALSE
## [40,] FALSE FALSE FALSE FALSE FALSE FALSE
## [41,] FALSE FALSE FALSE FALSE FALSE FALSE
## [42,] FALSE FALSE FALSE FALSE FALSE FALSE
## [43,] FALSE FALSE FALSE FALSE FALSE FALSE
## [44,] FALSE FALSE FALSE FALSE FALSE FALSE
## [45,] FALSE FALSE FALSE FALSE FALSE FALSE
## [46,] FALSE FALSE FALSE FALSE FALSE FALSE
## [47,] FALSE FALSE FALSE FALSE FALSE FALSE
## [48,] FALSE FALSE FALSE FALSE FALSE FALSE
## [49,] FALSE FALSE FALSE FALSE FALSE FALSE
## [50,] FALSE FALSE FALSE FALSE FALSE FALSE
## [51,] FALSE FALSE FALSE FALSE FALSE FALSE
## [52,] FALSE FALSE FALSE FALSE FALSE FALSE
## [53,] FALSE FALSE FALSE FALSE FALSE FALSE
## [54,] FALSE FALSE FALSE FALSE FALSE FALSE
## [55,] FALSE FALSE FALSE FALSE FALSE FALSE
## [56,] FALSE FALSE FALSE FALSE FALSE FALSE
## [57,] FALSE FALSE FALSE FALSE FALSE TRUE
## [58,] FALSE FALSE FALSE FALSE FALSE TRUE
## [59,] FALSE FALSE FALSE FALSE FALSE FALSE
## [60,] FALSE FALSE FALSE FALSE FALSE FALSE
## [61,] FALSE FALSE FALSE FALSE FALSE FALSE
## [62,] FALSE FALSE FALSE FALSE FALSE FALSE
## [63,] FALSE FALSE FALSE FALSE FALSE FALSE
## [64,] FALSE FALSE FALSE FALSE FALSE FALSE
## [65,] FALSE FALSE FALSE FALSE FALSE FALSE
## [66,] FALSE FALSE FALSE FALSE FALSE FALSE
## [67,] FALSE FALSE FALSE FALSE FALSE FALSE
## [68,] FALSE FALSE FALSE FALSE FALSE FALSE
## [69,] FALSE FALSE FALSE FALSE FALSE TRUE
## [70,] FALSE FALSE FALSE FALSE FALSE TRUE
## [71,] FALSE FALSE FALSE FALSE FALSE FALSE
## [72,] FALSE FALSE FALSE FALSE FALSE FALSE
## [73,] FALSE FALSE FALSE FALSE FALSE FALSE
## [74,] FALSE FALSE FALSE FALSE FALSE FALSE
## [75,] FALSE FALSE FALSE FALSE FALSE FALSE
## [76,] FALSE FALSE FALSE FALSE FALSE FALSE
## [77,] FALSE FALSE FALSE FALSE FALSE FALSE
## [78,] FALSE FALSE FALSE FALSE FALSE FALSE
## [79,] FALSE FALSE FALSE FALSE FALSE FALSE
## [80,] FALSE FALSE FALSE FALSE FALSE FALSE
## [81,] FALSE FALSE FALSE FALSE FALSE FALSE
## [82,] FALSE FALSE FALSE FALSE FALSE FALSE
## [83,] FALSE FALSE FALSE FALSE FALSE TRUE
## [84,] FALSE FALSE FALSE FALSE FALSE FALSE
## [85,] FALSE FALSE FALSE FALSE FALSE FALSE
## [86,] FALSE FALSE FALSE FALSE FALSE FALSE
## [87,] FALSE FALSE FALSE FALSE FALSE FALSE
## [88,] FALSE FALSE FALSE FALSE FALSE FALSE
## [89,] FALSE FALSE FALSE FALSE FALSE FALSE
## [90,] FALSE FALSE FALSE FALSE FALSE FALSE
## [91,] FALSE FALSE FALSE FALSE FALSE TRUE
## [92,] FALSE FALSE FALSE FALSE FALSE TRUE
## [93,] FALSE FALSE FALSE FALSE FALSE FALSE
## [94,] FALSE FALSE FALSE FALSE FALSE FALSE
## [95,] FALSE FALSE FALSE FALSE FALSE FALSE
## [96,] FALSE FALSE FALSE FALSE FALSE FALSE
## [97,] FALSE FALSE FALSE FALSE FALSE FALSE
## [98,] FALSE FALSE FALSE FALSE FALSE FALSE
## [99,] FALSE FALSE FALSE FALSE FALSE FALSE
## [100,] FALSE FALSE FALSE FALSE FALSE FALSE
## [101,] FALSE FALSE FALSE FALSE FALSE FALSE
## [102,] FALSE FALSE FALSE FALSE FALSE FALSE
## [103,] FALSE FALSE FALSE FALSE FALSE FALSE
## [104,] FALSE FALSE FALSE FALSE FALSE FALSE
## [105,] FALSE FALSE FALSE FALSE FALSE FALSE
## [106,] FALSE FALSE FALSE FALSE FALSE FALSE
## [107,] FALSE FALSE FALSE FALSE FALSE TRUE
## [108,] FALSE FALSE FALSE FALSE FALSE TRUE
## [109,] FALSE FALSE FALSE FALSE FALSE FALSE
## [110,] FALSE FALSE FALSE FALSE FALSE FALSE
## [111,] FALSE FALSE FALSE FALSE FALSE FALSE
## [112,] FALSE FALSE FALSE FALSE FALSE FALSE
## [113,] FALSE FALSE FALSE FALSE FALSE FALSE
## [114,] FALSE FALSE FALSE FALSE FALSE FALSE
## [115,] FALSE FALSE FALSE FALSE FALSE FALSE
## [116,] FALSE FALSE FALSE FALSE FALSE FALSE
## [117,] FALSE FALSE FALSE FALSE FALSE FALSE
## [118,] FALSE FALSE FALSE FALSE FALSE FALSE
## [119,] FALSE FALSE FALSE FALSE FALSE FALSE
## [120,] FALSE FALSE FALSE FALSE FALSE FALSE
## [121,] FALSE FALSE FALSE FALSE FALSE FALSE
## [122,] FALSE FALSE FALSE FALSE FALSE FALSE
## [123,] FALSE FALSE FALSE FALSE FALSE FALSE
## [124,] FALSE FALSE FALSE FALSE FALSE FALSE
## [125,] FALSE FALSE FALSE FALSE FALSE FALSE
## [126,] FALSE FALSE FALSE FALSE FALSE FALSE
## [127,] FALSE FALSE FALSE FALSE FALSE FALSE
## [128,] FALSE FALSE FALSE FALSE FALSE FALSE
## [129,] FALSE FALSE FALSE FALSE FALSE FALSE
## [130,] FALSE FALSE FALSE FALSE FALSE FALSE
## [131,] FALSE FALSE FALSE FALSE FALSE FALSE
## [132,] FALSE FALSE FALSE FALSE FALSE FALSE
## [133,] FALSE FALSE FALSE FALSE FALSE FALSE
## [134,] FALSE FALSE FALSE FALSE FALSE FALSE
## [135,] FALSE FALSE FALSE FALSE FALSE FALSE
## [136,] FALSE FALSE FALSE FALSE FALSE FALSE
## [137,] FALSE FALSE FALSE FALSE FALSE FALSE
## [138,] FALSE FALSE FALSE FALSE FALSE FALSE
## [139,] FALSE FALSE FALSE FALSE FALSE FALSE
## [140,] FALSE FALSE FALSE FALSE FALSE FALSE
## [141,] FALSE FALSE FALSE FALSE FALSE FALSE
## [142,] FALSE FALSE FALSE FALSE FALSE FALSE
## [143,] FALSE FALSE FALSE FALSE FALSE FALSE
## [144,] FALSE FALSE FALSE FALSE FALSE FALSE
## [145,] FALSE FALSE FALSE FALSE FALSE FALSE
## [146,] FALSE FALSE FALSE FALSE FALSE FALSE
## [147,] FALSE FALSE FALSE FALSE FALSE FALSE
## [148,] FALSE FALSE FALSE FALSE FALSE FALSE
## [149,] FALSE FALSE FALSE FALSE FALSE TRUE
## [150,] FALSE FALSE FALSE FALSE FALSE TRUE
## [151,] FALSE FALSE FALSE FALSE FALSE FALSE
## [152,] FALSE FALSE FALSE FALSE FALSE FALSE
## [153,] FALSE FALSE FALSE FALSE FALSE FALSE
## [154,] FALSE FALSE FALSE FALSE FALSE FALSE
## [155,] FALSE FALSE FALSE FALSE FALSE FALSE
## [156,] FALSE FALSE FALSE FALSE FALSE FALSE
## [157,] FALSE FALSE FALSE FALSE FALSE FALSE
## [158,] FALSE FALSE FALSE FALSE FALSE FALSE
## [159,] FALSE FALSE FALSE FALSE FALSE FALSE
## [160,] FALSE FALSE FALSE FALSE FALSE FALSE
## [161,] FALSE FALSE FALSE FALSE FALSE FALSE
## [162,] FALSE FALSE FALSE FALSE FALSE FALSE
## [163,] FALSE FALSE FALSE FALSE FALSE FALSE
## [164,] FALSE FALSE FALSE FALSE FALSE FALSE
## [165,] FALSE FALSE FALSE FALSE FALSE FALSE
## [166,] FALSE FALSE FALSE FALSE FALSE FALSE
## [167,] FALSE FALSE FALSE FALSE FALSE FALSE
## [168,] FALSE FALSE FALSE FALSE FALSE FALSE
## [169,] FALSE FALSE FALSE FALSE FALSE FALSE
## [170,] FALSE FALSE FALSE FALSE FALSE FALSE
## [171,] FALSE FALSE FALSE FALSE FALSE FALSE
## [172,] FALSE FALSE FALSE FALSE FALSE FALSE
## [173,] FALSE FALSE FALSE FALSE FALSE FALSE
## [174,] FALSE FALSE FALSE FALSE FALSE FALSE
## [175,] FALSE FALSE FALSE FALSE FALSE FALSE
## [176,] FALSE FALSE FALSE FALSE FALSE FALSE
## [177,] FALSE FALSE FALSE FALSE FALSE FALSE
## [178,] FALSE FALSE FALSE FALSE FALSE FALSE
## [179,] FALSE FALSE FALSE FALSE FALSE FALSE
## [180,] FALSE FALSE FALSE FALSE FALSE FALSE
## [181,] FALSE FALSE FALSE FALSE FALSE FALSE
## [182,] FALSE FALSE FALSE FALSE FALSE FALSE
## [183,] FALSE FALSE FALSE FALSE FALSE FALSE
## [184,] FALSE FALSE FALSE FALSE FALSE FALSE
## [185,] FALSE FALSE FALSE FALSE FALSE FALSE
## [186,] FALSE FALSE FALSE FALSE FALSE FALSE
## [187,] FALSE FALSE FALSE FALSE FALSE FALSE
## [188,] FALSE FALSE FALSE FALSE FALSE FALSE
## [189,] FALSE FALSE FALSE FALSE FALSE TRUE
## [190,] FALSE FALSE FALSE FALSE FALSE TRUE
## [191,] FALSE FALSE FALSE FALSE FALSE FALSE
## [192,] FALSE FALSE FALSE FALSE FALSE FALSE
## [193,] FALSE FALSE FALSE FALSE FALSE FALSE
## [194,] FALSE FALSE FALSE FALSE FALSE FALSE
## [195,] FALSE FALSE FALSE FALSE FALSE FALSE
## [196,] FALSE FALSE FALSE FALSE FALSE FALSE
## [197,] FALSE FALSE FALSE FALSE FALSE FALSE
## [198,] FALSE FALSE FALSE FALSE FALSE FALSE
## [199,] FALSE FALSE FALSE FALSE FALSE FALSE
## [200,] FALSE FALSE FALSE FALSE FALSE FALSE
## GDP GDP_Per_Capita Population
## [1,] FALSE FALSE FALSE
## [2,] FALSE FALSE FALSE
## [3,] FALSE FALSE FALSE
## [4,] FALSE FALSE FALSE
## [5,] FALSE FALSE FALSE
## [6,] FALSE FALSE FALSE
## [7,] FALSE FALSE FALSE
## [8,] FALSE FALSE FALSE
## [9,] FALSE FALSE FALSE
## [10,] FALSE FALSE FALSE
## [11,] FALSE FALSE FALSE
## [12,] FALSE FALSE FALSE
## [13,] FALSE FALSE FALSE
## [14,] FALSE FALSE FALSE
## [15,] FALSE FALSE FALSE
## [16,] FALSE FALSE FALSE
## [17,] FALSE FALSE FALSE
## [18,] FALSE FALSE FALSE
## [19,] FALSE FALSE FALSE
## [20,] FALSE FALSE FALSE
## [21,] FALSE FALSE FALSE
## [22,] FALSE FALSE FALSE
## [23,] FALSE FALSE FALSE
## [24,] FALSE FALSE FALSE
## [25,] FALSE FALSE FALSE
## [26,] FALSE FALSE FALSE
## [27,] FALSE FALSE FALSE
## [28,] FALSE FALSE FALSE
## [29,] FALSE FALSE FALSE
## [30,] FALSE FALSE FALSE
## [31,] FALSE FALSE FALSE
## [32,] FALSE FALSE FALSE
## [33,] FALSE FALSE FALSE
## [34,] FALSE FALSE FALSE
## [35,] FALSE FALSE FALSE
## [36,] FALSE FALSE FALSE
## [37,] FALSE FALSE FALSE
## [38,] FALSE FALSE FALSE
## [39,] FALSE FALSE FALSE
## [40,] FALSE FALSE FALSE
## [41,] FALSE FALSE FALSE
## [42,] FALSE FALSE FALSE
## [43,] FALSE FALSE FALSE
## [44,] FALSE FALSE FALSE
## [45,] FALSE FALSE FALSE
## [46,] FALSE FALSE FALSE
## [47,] FALSE FALSE FALSE
## [48,] FALSE FALSE FALSE
## [49,] FALSE FALSE FALSE
## [50,] FALSE FALSE FALSE
## [51,] FALSE FALSE FALSE
## [52,] FALSE FALSE FALSE
## [53,] FALSE FALSE FALSE
## [54,] FALSE FALSE FALSE
## [55,] FALSE FALSE FALSE
## [56,] FALSE FALSE FALSE
## [57,] FALSE FALSE FALSE
## [58,] FALSE FALSE FALSE
## [59,] FALSE FALSE FALSE
## [60,] FALSE FALSE FALSE
## [61,] FALSE FALSE FALSE
## [62,] FALSE FALSE FALSE
## [63,] FALSE FALSE FALSE
## [64,] FALSE FALSE FALSE
## [65,] FALSE FALSE FALSE
## [66,] FALSE FALSE FALSE
## [67,] FALSE FALSE FALSE
## [68,] FALSE FALSE FALSE
## [69,] FALSE FALSE FALSE
## [70,] FALSE FALSE FALSE
## [71,] FALSE FALSE FALSE
## [72,] FALSE FALSE FALSE
## [73,] FALSE FALSE FALSE
## [74,] FALSE FALSE FALSE
## [75,] FALSE FALSE FALSE
## [76,] FALSE FALSE FALSE
## [77,] FALSE FALSE FALSE
## [78,] FALSE FALSE FALSE
## [79,] FALSE FALSE FALSE
## [80,] FALSE FALSE FALSE
## [81,] FALSE FALSE FALSE
## [82,] FALSE FALSE FALSE
## [83,] FALSE FALSE FALSE
## [84,] FALSE FALSE FALSE
## [85,] FALSE FALSE FALSE
## [86,] FALSE FALSE FALSE
## [87,] FALSE FALSE FALSE
## [88,] FALSE FALSE FALSE
## [89,] FALSE FALSE FALSE
## [90,] FALSE FALSE FALSE
## [91,] FALSE FALSE FALSE
## [92,] FALSE FALSE FALSE
## [93,] FALSE FALSE FALSE
## [94,] FALSE FALSE FALSE
## [95,] FALSE FALSE FALSE
## [96,] FALSE FALSE FALSE
## [97,] FALSE FALSE FALSE
## [98,] FALSE FALSE FALSE
## [99,] FALSE FALSE FALSE
## [100,] FALSE FALSE FALSE
## [101,] FALSE FALSE FALSE
## [102,] FALSE FALSE FALSE
## [103,] FALSE FALSE FALSE
## [104,] FALSE FALSE FALSE
## [105,] FALSE FALSE FALSE
## [106,] FALSE FALSE FALSE
## [107,] FALSE FALSE FALSE
## [108,] FALSE FALSE FALSE
## [109,] FALSE FALSE FALSE
## [110,] FALSE FALSE FALSE
## [111,] FALSE FALSE FALSE
## [112,] FALSE FALSE FALSE
## [113,] FALSE FALSE FALSE
## [114,] FALSE FALSE FALSE
## [115,] FALSE FALSE FALSE
## [116,] FALSE FALSE FALSE
## [117,] FALSE FALSE FALSE
## [118,] FALSE FALSE FALSE
## [119,] FALSE FALSE FALSE
## [120,] FALSE FALSE FALSE
## [121,] FALSE FALSE FALSE
## [122,] FALSE FALSE FALSE
## [123,] FALSE FALSE FALSE
## [124,] FALSE FALSE FALSE
## [125,] FALSE FALSE FALSE
## [126,] FALSE FALSE FALSE
## [127,] FALSE FALSE FALSE
## [128,] FALSE FALSE FALSE
## [129,] FALSE FALSE FALSE
## [130,] FALSE FALSE FALSE
## [131,] FALSE FALSE FALSE
## [132,] FALSE FALSE FALSE
## [133,] FALSE FALSE FALSE
## [134,] FALSE FALSE FALSE
## [135,] FALSE FALSE FALSE
## [136,] FALSE FALSE FALSE
## [137,] FALSE FALSE FALSE
## [138,] FALSE FALSE FALSE
## [139,] FALSE FALSE FALSE
## [140,] FALSE FALSE FALSE
## [141,] FALSE FALSE FALSE
## [142,] FALSE FALSE FALSE
## [143,] FALSE FALSE FALSE
## [144,] FALSE FALSE FALSE
## [145,] FALSE FALSE FALSE
## [146,] FALSE FALSE FALSE
## [147,] FALSE FALSE FALSE
## [148,] FALSE FALSE FALSE
## [149,] FALSE FALSE FALSE
## [150,] FALSE FALSE FALSE
## [151,] FALSE FALSE FALSE
## [152,] FALSE FALSE FALSE
## [153,] FALSE FALSE FALSE
## [154,] FALSE FALSE FALSE
## [155,] FALSE FALSE FALSE
## [156,] FALSE FALSE FALSE
## [157,] FALSE FALSE FALSE
## [158,] FALSE FALSE FALSE
## [159,] FALSE FALSE FALSE
## [160,] FALSE FALSE FALSE
## [161,] FALSE FALSE FALSE
## [162,] FALSE FALSE FALSE
## [163,] FALSE FALSE FALSE
## [164,] FALSE FALSE FALSE
## [165,] FALSE FALSE FALSE
## [166,] FALSE FALSE FALSE
## [167,] FALSE FALSE FALSE
## [168,] FALSE FALSE FALSE
## [169,] FALSE FALSE FALSE
## [170,] FALSE FALSE FALSE
## [171,] FALSE FALSE FALSE
## [172,] FALSE FALSE FALSE
## [173,] FALSE FALSE FALSE
## [174,] FALSE FALSE FALSE
## [175,] FALSE FALSE FALSE
## [176,] FALSE FALSE FALSE
## [177,] FALSE FALSE FALSE
## [178,] FALSE FALSE FALSE
## [179,] FALSE FALSE FALSE
## [180,] FALSE FALSE FALSE
## [181,] FALSE FALSE FALSE
## [182,] FALSE FALSE FALSE
## [183,] FALSE FALSE FALSE
## [184,] FALSE FALSE FALSE
## [185,] FALSE FALSE FALSE
## [186,] FALSE FALSE FALSE
## [187,] FALSE FALSE FALSE
## [188,] FALSE FALSE FALSE
## [189,] FALSE FALSE FALSE
## [190,] FALSE FALSE FALSE
## [191,] FALSE FALSE FALSE
## [192,] FALSE FALSE FALSE
## [193,] FALSE FALSE FALSE
## [194,] FALSE FALSE FALSE
## [195,] FALSE FALSE FALSE
## [196,] FALSE FALSE FALSE
## [197,] FALSE FALSE FALSE
## [198,] FALSE FALSE FALSE
## [199,] FALSE FALSE FALSE
## [200,] FALSE FALSE FALSE
csdata$Democracy[csdata$v1==' '] <- NA
csdata1 <- na.omit(csdata)
names(csdata1)
## [1] "Country" "Year" "CSO_Growth"
## [4] "No_IGO_Memberships" "Rmtnc_Inflow_GDP" "Democracy"
## [7] "GDP" "GDP_Per_Capita" "Population"
View(csdata1)
summary(csdata1)
## Country Year CSO_Growth No_IGO_Memberships
## Length:180 Min. :2005 Min. :0.0000 Min. :33.00
## Class :character 1st Qu.:2005 1st Qu.:0.0000 1st Qu.:52.00
## Mode :character Median :2015 Median :0.0000 Median :61.50
## Mean :2010 Mean :0.4889 Mean :62.83
## 3rd Qu.:2015 3rd Qu.:1.0000 3rd Qu.:73.25
## Max. :2015 Max. :1.0000 Max. :93.00
## Rmtnc_Inflow_GDP Democracy GDP GDP_Per_Capita
## Min. :0.000000 Min. :0.0000 Min. :3.655e+08 Min. : 0.0
## 1st Qu.:0.005864 1st Qu.:0.0000 1st Qu.:6.670e+09 1st Qu.: 793.8
## Median :0.023067 Median :0.0000 Median :1.744e+10 Median : 1851.5
## Mean :0.050192 Mean :0.4778 Mean :1.740e+11 Mean : 2895.7
## 3rd Qu.:0.070587 3rd Qu.:1.0000 3rd Qu.:6.175e+10 3rd Qu.: 4109.0
## Max. :0.392383 Max. :1.0000 Max. :1.050e+13 Max. :17948.9
## Population
## Min. :4.639e+05
## 1st Qu.:3.854e+06
## Median :1.151e+07
## Mean :5.705e+07
## 3rd Qu.:3.391e+07
## Max. :1.368e+09
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
stargazer(csdata1, type="text")
##
## =====================================================================================================
## Statistic N Mean St. Dev. Min Max
## -----------------------------------------------------------------------------------------------------
## Year 180 2,010.056 5.014 2,005 2,015
## CSO_Growth 180 0.489 0.501 0 1
## No_IGO_Memberships 180 62.833 14.070 33 93
## Rmtnc_Inflow_GDP 180 0.050 0.068 0.000 0.392
## Democracy 180 0.478 0.501 0 1
## GDP 180 174,009,927,388.000 843,807,886,139.000 365,451,707.000 10,499,697,714,628.000
## GDP_Per_Capita 180 2,895.682 2,870.658 0.000 17,948.920
## Population 180 57,050,103.000 190,261,741.000 463,929.800 1,368,090,500.000
## -----------------------------------------------------------------------------------------------------
cs <- csdata1[,c("CSO_Growth", "No_IGO_Memberships", "Rmtnc_Inflow_GDP", "Democracy", "GDP", "GDP_Per_Capita", "Population")]
pairs(cs,col=cs$CSO_Growth,cex=.5)
correlation <- cor(cs)
stargazer(correlation, type="text")
##
## ============================================================================================================
## CSO_Growth No_IGO_Memberships Rmtnc_Inflow_GDP Democracy GDP GDP_Per_Capita Population
## ------------------------------------------------------------------------------------------------------------
## CSO_Growth 1 0.059 0.158 0.021 0.130 -0.194 0.196
## No_IGO_Memberships 0.059 1 -0.224 0.231 0.248 0.279 0.294
## Rmtnc_Inflow_GDP 0.158 -0.224 1 0.132 -0.098 -0.185 -0.098
## Democracy 0.021 0.231 0.132 1 -0.016 0.269 0.017
## GDP 0.130 0.248 -0.098 -0.016 1 0.194 0.747
## GDP_Per_Capita -0.194 0.279 -0.185 0.269 0.194 1 0.016
## Population 0.196 0.294 -0.098 0.017 0.747 0.016 1
## ------------------------------------------------------------------------------------------------------------
# install.packages('plyr')
library('plyr')
count(csdata1, "Democracy")
## Democracy freq
## 1 0 94
## 2 1 86
# install.packages('plyr')
library('plyr')
count(csdata1, "CSO_Growth")
## CSO_Growth freq
## 1 0 92
## 2 1 88
# Fit a logistic regression model to predict "Increase in Number of CSOs" using Remittances, Democracy, GDP/Capita and Population
glm.fit=glm(CSO_Growth~No_IGO_Memberships+Rmtnc_Inflow_GDP+Democracy+GDP+GDP_Per_Capita+Population, data=csdata1,family=binomial)
summary(glm.fit)
##
## Call:
## glm(formula = CSO_Growth ~ No_IGO_Memberships + Rmtnc_Inflow_GDP +
## Democracy + GDP + GDP_Per_Capita + Population, family = binomial,
## data = csdata1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.8355 -1.0718 -0.4493 1.1344 1.8750
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.647e-01 8.308e-01 -0.559 0.5759
## No_IGO_Memberships 3.661e-03 1.358e-02 0.270 0.7875
## Rmtnc_Inflow_GDP 5.287e+00 2.626e+00 2.013 0.0441 *
## Democracy 1.723e-01 3.487e-01 0.494 0.6211
## GDP 5.348e-13 1.274e-12 0.420 0.6746
## GDP_Per_Capita -1.853e-04 8.375e-05 -2.213 0.0269 *
## Population 9.268e-09 6.403e-09 1.447 0.1478
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 249.44 on 179 degrees of freedom
## Residual deviance: 222.45 on 173 degrees of freedom
## AIC: 236.45
##
## Number of Fisher Scoring iterations: 6
# I use the predict function to predict the probability of an increase in the number of CSOs, given values of the predictors.
glm.probs=predict(glm.fit,type="response")
glm.probs[1:5]
## 2 3 4 5 6
## 0.5087720 0.5654667 0.4258202 0.4134387 0.3692769
# I coded "Increase in CSOs" as 1, so glm.probs are the probabilities of No_CSO_Increased. going up. Here I create actual labels instead of probabilities.
glm.pred=ifelse(glm.probs>0.5,"Increase","No Increase")
# Confusion matrix
attach(csdata1)
table(glm.pred,CSO_Growth) # predictions vs. truth
## CSO_Growth
## glm.pred 0 1
## Increase 28 51
## No Increase 64 37
mean(glm.pred==CSO_Growth)
## [1] 0
# Create a vector corresponding to the observations from 2005
train = Year<2015
# Fit the logistic regression using only the train data
glm.fit=glm(CSO_Growth ~ No_IGO_Memberships + Rmtnc_Inflow_GDP + Democracy + GDP + GDP_Per_Capita + Population, data=csdata1,family=binomial, subset=train)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
# Test the model by fitting the test data into the fitted model
glm.probs=predict(glm.fit,newdata=csdata1[!train,],type="response")
# Compute the predictions for 2015 and compare them to the actual
# increase in number of CSOs over that time period
glm.pred=ifelse(glm.probs >0.5,"1","0")
CSO_Growth.2015=csdata1$CSO_Growth[!train]
table(glm.pred,CSO_Growth.2015)
## CSO_Growth.2015
## glm.pred 0 1
## 0 24 8
## 1 40 19
mean(glm.pred==CSO_Growth.2015)
## [1] 0.4725275
mean(glm.pred != CSO_Growth.2015)
## [1] 0.5274725
19/(40+19)
## [1] 0.3220339